
## CHAP 9.2 - PHOTOSÝNTHESIS: AN OVERVIEW

| <b>Essential</b> | Question( | s) |
|------------------|-----------|----|
|------------------|-----------|----|

## Questions:



| • | The key cellular process identified with _ | prod | uction is <b>p</b> l | hotosynth | ıesis. |
|---|--------------------------------------------|------|----------------------|-----------|--------|
|   |                                            |      |                      |           |        |

• Photosynthesis is the process in which \_\_\_\_\_ plants use the energy of \_\_\_\_ to convert water and carbon dioxide into high-\_\_\_\_ carbohydrates and oxygen.

## **Chlorophyll and Chloroplasts**

- Light energy from the sun must be \_\_\_\_\_\_ for photosynthesis to occur.
- Sunlight is "\_\_\_\_\_" light—actually a \_\_\_\_\_ of different wavelengths.
- Photosynthetic organisms capture energy from sunlight with with lightabsorbing molecules called
  - The \_\_\_\_\_ pigment in plants is **chlorophyll.**
  - There are \_\_\_\_ main types of chlorophyll: chlorophyll *a* and chlorophyll *b*
- Chlorophyll \_\_\_\_\_ light well in the blue-violet and red regions of the visible spectrum.
- Chlorophyll does \_\_\_\_\_ absorb light within the \_\_\_\_\_ region of the spectrum. Green light is by leaves, which is why plants look green.
- Light is a form of energy, so any compound that \_\_\_\_\_ light also absorbs energy from that light.
- When chlorophyll absorbs light, much of the \_\_\_\_\_\_ is transferred directly to \_\_\_\_\_\_ in the chlorophyll molecule, raising the energy levels of these electrons.
  - These high-energy electrons are what make work.

Photosynthesis takes place \_\_\_\_\_\_ organelles called \_\_\_\_\_\_\_ Stroma \_\_\_\_\_\_ Thylakoid membrane



## **Electron Carriers**

- The \_\_\_\_\_\_-energy electrons produced by chlorophyll are highly \_\_\_\_\_\_ and \_\_\_\_\_\_ a special "carrier."
- An electron carrier is a \_\_\_\_\_\_ that can accept a pair of high-energy electrons and \_\_\_\_\_ them, along with most of their energy, to another \_\_\_\_\_.
- NADPH can \_\_\_\_\_ the high-energy electrons that were \_\_\_\_
  by light absorption in chlorophyll to \_\_\_\_\_ reactions elsewhere in the cell.

| Questions: | An Overview of Photosynthesis                                  |  |  |  |
|------------|----------------------------------------------------------------|--|--|--|
|            | Photosynthesis uses the energy of sunlight to water and carbon |  |  |  |
|            | dioxide (energy reactants) intoenergy sugars and oxygen        |  |  |  |
|            | (products).                                                    |  |  |  |
|            | light Carbon dioxide + Water → Sugars + Oxygen                 |  |  |  |
|            | Carbon dioxide + vvater → Sugars + Oxygen                      |  |  |  |
|            |                                                                |  |  |  |
|            |                                                                |  |  |  |
|            | $6CO_2$ $6H_2O$ light $C_6H_{12}O_6$ $6O_2$                    |  |  |  |
|            | ++                                                             |  |  |  |
|            |                                                                |  |  |  |
|            | Photosynthesis involves sets Light-Dependent Light-Independent |  |  |  |
|            | of reactions:                                                  |  |  |  |
|            | 1. Light                                                       |  |  |  |
|            | reactions                                                      |  |  |  |
|            | <ul> <li>Light-dependent</li> </ul>                            |  |  |  |
|            | reactions                                                      |  |  |  |
|            | thestroma                                                      |  |  |  |
|            | involvement of light                                           |  |  |  |
|            | and light-absorbing                                            |  |  |  |
|            |                                                                |  |  |  |
|            | 2. Light                                                       |  |  |  |
|            | reactions                                                      |  |  |  |
|            | Light-independent reactions use and molecules                  |  |  |  |
|            | produced in the light-dependent reactions to high-             |  |  |  |
|            | energy sugars from carbon dioxide                              |  |  |  |
|            | Light-Dependent Light-Independent                              |  |  |  |
|            | Reactions Reactions                                            |  |  |  |
|            |                                                                |  |  |  |
|            | NADPH NADPH                                                    |  |  |  |
|            | Water Carbon Dioxide                                           |  |  |  |
|            | Water Carbon Dioxide                                           |  |  |  |
|            | THYLAKOID                                                      |  |  |  |
|            | Oxygen Sugars and Other carbohydrates                          |  |  |  |
|            | Other carbonydrates                                            |  |  |  |
|            | NADP) 4 NADP) 4                                                |  |  |  |
|            |                                                                |  |  |  |
|            | Light-dependent and light-independent reactions have an        |  |  |  |
|            | relationship                                                   |  |  |  |
|            | Light-Dependent Reactions                                      |  |  |  |
|            | H <sub>2</sub> O ugh                                           |  |  |  |
|            | NADPH 1                                                        |  |  |  |
|            | Zarz                                                           |  |  |  |
|            | THYLAKOE                                                       |  |  |  |
|            | STROMA                                                         |  |  |  |
|            | NADP A                                                         |  |  |  |
|            |                                                                |  |  |  |
|            | O₂ <sup>™</sup> Sugars                                         |  |  |  |
| Summary:   |                                                                |  |  |  |
|            |                                                                |  |  |  |
|            |                                                                |  |  |  |
|            |                                                                |  |  |  |
|            |                                                                |  |  |  |
|            |                                                                |  |  |  |